Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
3D Print Addit Manuf ; 11(2): 435-445, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38689918

ABSTRACT

A methodology for three-dimensionally printing ultrasoft silicone with a functional stiffness gradient is presented. Ultraviolet-cure silicone was deposited via two independently controlled extruders into a thixotropic, gel-like, silicone oil-based support matrix. Each extruder contained a different liquid silicone formulation. The extrusion rates were independently varied during printing such that the combined selectively deposited material contained different ratios of the two silicones, resulting in localized control of material stiffness. Tests to validate the process are reported, including tensile testing of homogeneous cubic specimens to quantify the range of material stiffness that could be printed, indentation testing of cuboid specimens to characterize printed stiffness gradients, and vibratory testing of synthetic multilayer vocal fold (VF) models to demonstrate that the method may be applied to the fabrication of biomechanical models for voice production research. The cubic specimens exhibited linear stress-strain data with tensile elasticity modulus values between 1.11 and 27.1 kPa, more than a factor of 20 in stiffness variation. The cuboid specimens exhibited material variations that were visually recognizable and quantifiable via indentation testing. The VF models withstood rigorous phonatory flow-induced vibration and exhibited vibratory characteristics comparable to those of previous models. Overall, while process refinements are needed, the results of these tests demonstrate the ability to print ultrasoft silicone with stiffness gradients.

2.
Health Psychol Rev ; : 1-25, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626312

ABSTRACT

Despite the influence of the integrated motivational-volitional (IMV)1 model on research and practice, the supporting literature has not been systematically synthesised. This systematic review aims to synthesise the literature testing the IMV model of suicidal behaviour. Using citation and database searching, PsycINFO, EMBASE, PubMed, Web of Science, and Google Scholar were searched for studies referencing the IMV model (last searched on 28th March 2023). Included studies empirically tested the hypotheses of the model. Quality assessment was conducted using the National Institute of Health tool. Findings from 98 records (100 studies, 138,365 participants) were narratively synthesised. Results from studies directly testing the hypothesised pathways of the model supported the defeat-entrapment-suicidal ideation pathway of the IMV model. Case-control studies comparing differences between control, ideation, and enactment groups were consistent with hypotheses in univariate and cross-sectional analyses. However, support for the model was mixed for case-control multivariate and prospective studies. Due to low overlap in variables studied, the role of specific pre-motivational phase variables and stage-specific moderators was inconclusive. The studies received overall good quality ratings. The IMV model presents a promising framework for understanding and preventing suicide. Defeat, entrapment, and key variables may be useful in informing suicide prevention measures.

3.
Proc Natl Acad Sci U S A ; 120(45): e2306899120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37903262

ABSTRACT

Taxonomic data are a scientific common. Unlike nomenclature, which has strong governance institutions, there are currently no generally accepted governance institutions for the compilation of taxonomic data into an accepted global list. This gap results in challenges for conservation, ecological research, policymaking, international trade, and other areas of scientific and societal importance. Consensus on a global list and its management requires effective governance and standards, including agreed mechanisms for choosing among competing taxonomies and partial lists. However, governance frameworks are currently lacking, and a call for governance in 2017 generated critical responses. Any governance system to which compliance is voluntary requires a high level of legitimacy and credibility among those by and for whom it is created. Legitimacy and credibility, in turn, require adequate and credible consultation. Here, we report on the results of a global survey of taxonomists, scientists from other disciplines, and users of taxonomy designed to assess views and test ideas for a new system of taxonomic list governance. We found a surprisingly high degree of agreement on the need for a global list of accepted species and their names, and consistent views on what such a list should provide to users and how it should be governed. The survey suggests that consensus on a mechanism to create, manage, and govern a single widely accepted list of all the world's species is achievable. This finding was unexpected given past controversies about the merits of list governance.


Subject(s)
Commerce , Physicians , Humans , Internationality
5.
J Voice ; 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36496305

ABSTRACT

OBJECTIVE: Subglottic stenosis (SGS) is characterized by a narrowing of the trachea near the cricotracheal junction and impairs breathing. SGS may also adversely affect voice quality, but for reasons that are not fully understood. The purpose of this study is to provide experiment-based data concerning the effects on phonation of airway obstruction due to SGS. STUDY DESIGN: Basic science METHODS: A device simulating a SGS of adjustable severity ranging from 36% to 99.8% obstruction was created. Self-oscillating synthetic VF models were mounted downstream of the device and data were acquired to evaluate the effects of the obstruction on phonatory response. RESULTS: Onset pressures were relatively insensitive to obstructions of up to approximately 80% to 90% reductions in subglottic airway area and sharply increased thereafter. Flow rate (under conditions of constant pressure), flow resistance, and fundamental frequency all exhibited similar degrees of sensitivity to SGS obstruction as onset pressure. High-frequency noise became significant by 80% obstruction. Glottal area appeared to be less sensitive, not being affected until approximately 90% obstruction. CONCLUSIONS: Consistent with previous computational studies, this study found that aerodynamic, acoustic, and vibratory responses of self-oscillating VF models were largely unaffected by SGS until approximately 80% to 90% obstruction, and significantly affected at higher obstructions. This suggests that Grades I and II stenoses are unlikely to introduce subglottic airway aerodynamic disturbances that are sufficient in and of themselves to significantly alter phonatory output. The SGS model introduces a framework for future benchtop studies involving subglottic and supraglottic airway constrictions.

6.
Lab Chip ; 22(18): 3424-3435, 2022 09 13.
Article in English | MEDLINE | ID: mdl-35959772

ABSTRACT

The polymerase chain reaction (PCR) is paramount in nucleic acid amplification testing, and for many assays, the use of PCR or qPCR is considered the 'gold standard'. While instrumentation for executing PCR has advanced over the last two decades, a growing interest in point-of-need testing has highlighted the deficit that exists for 'rapid PCR' systems. Here, we describe a field-forward prototype instrument capable of ultra-fast thermal cycling for real-time PCR amplification of DNA and RNA. The custom-designed, injection-molded microfluidic chips interface with a novel mechatronic system to complete 40 cycles of real-time PCR in under 10 minutes, an 84% reduction in time compared to a standard 50 minute assay. Such rapid amplification is enabled by two thermoelectric Peltiers capable of efficiently heating and cooling the sample at 12 and 10 °C s-1, respectively. Judicious selection and strategic placement of the thermal cyclers and fluorescence detector relative to the microchip enable synchronized thermal cycling and fluorescence monitoring, further reducing time-to-result. Robust amplification and detection of DNA and RNA targets empowers laboratories to achieve rapid, actionable information in endless applications.


Subject(s)
Microfluidics , Nucleic Acid Amplification Techniques , DNA/genetics , RNA/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
7.
J Eng Sci Med Diagn Ther ; 5(3): 031106, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35832120

ABSTRACT

Synthetic, self-oscillating models of the human vocal folds are used to study the complex and inter-related flow, structure, and acoustical aspects of voice production. The vocal folds typically collide during each cycle, thereby creating a brief period of glottal closure that has important implications for flow, acoustic, and motion-related outcomes. Many previous synthetic models, however, have been limited by incomplete glottal closure during vibration. In this study, a low-fidelity, two-dimensional, multilayer finite element model of vocal fold flow-induced vibration was coupled with a custom genetic algorithm optimization code to determine geometric and material characteristics that would be expected to yield physiologically-realistic frequency and closed quotient values. The optimization process yielded computational models that vibrated with favorable frequency and closed quotient characteristics. A tradeoff was observed between frequency and closed quotient. A synthetic, self-oscillating vocal fold model with geometric and material properties informed by the simulation outcomes was fabricated and tested for onset pressure, oscillation frequency, and closed quotient. The synthetic model successfully vibrated at a realistic frequency and exhibited a nonzero closed quotient. The methodology described in this study provides potential direction for fabricating synthetic models using isotropic silicone materials that can be designed to vibrate with physiologically-realistic frequencies and closed quotient values. The results also show the potential for a low-fidelity model optimization approach to be used to tune synthetic vocal fold model characteristics for specific vibratory outcomes.

8.
J Bone Miner Res ; 37(6): 1170-1178, 2022 06.
Article in English | MEDLINE | ID: mdl-35373859

ABSTRACT

Relative abundance of fibroblast growth factor-23 (FGF23) measured by the C-terminal (cFGF23, which measures both intact FGF23 and C-terminal fragments) versus intact (iFGF23, measures only intact hormone) assays varies by kidney function in humans. Differential kidney clearance may explain this finding. We measured cFGF23 and iFGF23 in the aorta and bilateral renal veins of 162 patients with essential hypertension undergoing renal angiography. Using multivariable linear regression, we examined factors associated with aorta to renal vein reduction of FGF23 using both assays. Similar parameters and with addition of urine concentrations of cFGF23 and iFGF23 were measured in six Wistar rats. Mean ± standard deviation (SD) age was 54 ± 12 years, 54% were women, and mean creatinine clearance was 72 ± 48 mL/min/100 g. The human kidney reduced the concentrations of both cFGF23 (16% ± 12%) and iFGF23 (21% ± 16%), but reduction was higher for iFGF23. Greater kidney creatinine and PTH reductions were each independently associated with greater reductions of both cFGF23 and iFGF23. The greater kidney reduction of iFGF23 compared to cFGF23 appeared stable and consistent across the range of creatinine clearance evaluated. Kidney clearance was similar, and urine concentrations of both assays were low in the rat models, suggesting kidney metabolism of both cFGF23 and iFGF23. Renal reduction of iFGF23 is higher than that of creatinine and cFGF23. Our data suggest that FGF23 is metabolized by the kidney. However, the major cell types involved in metabolization of FGF23 requires future study. Kidney clearance of FGF23 does not explain differences in C-terminal and intact moieties across the range of kidney function. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Fibroblast Growth Factor-23 , Kidney/metabolism , Animals , Creatinine , Female , Fibroblast Growth Factor-23/chemistry , Fibroblast Growth Factor-23/metabolism , Humans , Male , Rats , Rats, Wistar , United States
9.
J Biomech ; 121: 110388, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33873116

ABSTRACT

The biomechanics of human voice production are commonly studied using benchtop silicone vocal fold models that mimic the vibration of their in vivo counterparts. These models often have multiple layers of differing stiffness that represent human vocal fold tissue layers and are fabricated using a multi-step casting process. The purpose of the present study is to introduce and demonstrate a process for fabricating functional multi-layer vocal fold models using an alternative approach, termed embedded 3D printing, that is a hybrid of casting and 3D printing. In this paper the fabrication process is described. Analysis of the resulting geometric and stiffness characteristics of the layers, including layer elastic modulus values ranging from less than 1 kPa to approximately 40 kPa, is presented. The results of tests demonstrating that the models are capable of sustained phonomimetic vibration are given. Capabilities and limitations of the embedded 3D printing process are discussed. It is concluded that the process has the potential to contribute to voice biomechanics research by facilitating prospective improvements in the fabrication, design, and functionality of multi-layer vocal fold models.


Subject(s)
Phonation , Vocal Cords , Humans , Models, Anatomic , Printing, Three-Dimensional , Prospective Studies , Vibration
10.
Addit Manuf ; 372021 Jan.
Article in English | MEDLINE | ID: mdl-33718006

ABSTRACT

Embedded 3D printing processes involve extruding ink within a support matrix that supports the ink throughout printing and curing. In once class of embedded 3D printing, which we refer to as "removable embedded 3D printing," curable inks are printed, cured, then removed from the uncured support matrix. Removable embedded 3D printing is advantageous because low-viscosity inks can be patterned in freeform geometries which may not be feasible to create via casting and other printing processes. When printing solid-infill geometries, however, uncured support matrix becomes trapped within the prints, which may be undesirable. This study builds on previous work by formulating a support matrix for removable embedded 3D printing that cures when mixed with the printed silicone ink to solve the problem of trapped, uncured support matrix within solid-infill prints. Printed specimens are shown to have a nearly isotropic elastic modulus in directions perpendicular and parallel to the printed layers, and a decreased modulus and increased elongation at break compared to specimens cast from the ink. The rheological properties of the support matrix are reported. The capabilities of the printer and support matrix are demonstrated by printing a variety of geometries from four UV and addition-cure silicone inks. Shapes printed with these inks range by nearly two orders of magnitude in stiffness and have failure strains between approximately 50 and 250%, suggesting a wide range of potential applications for this printing process.

11.
Am J Physiol Renal Physiol ; 320(5): F761-F771, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33645318

ABSTRACT

Inhibitors of the main proximal tubular Na-glucose cotransporter (SGLT2) mitigate diabetic glomerular hyperfiltration and have been approved by the United States Food and Drug Administration for slowing the progression of diabetic kidney disease. It has been proposed that SGLT2 inhibitors improve hard renal outcomes by reducing glomerular capillary pressure (PGC) via a tubuloglomerular feedback (TGF) response to a decrease in proximal reabsorption (Jprox). However, the effect of SGLT2 inhibition on PGC has not been measured. Here, we studied the effects of acute SGLT2 blockade (ertugliflozin) on Jprox and glomerular hemodynamics in two-period micropuncture experiments using streptozotocin-induced diabetic rats fed high- or low-NaCl diets. PGC was measured by direct capillary puncture or computed from tubular stop-flow pressure (PSF). TGF is intact while measuring PGC directly but rendered inoperative when measuring PSF. Acute SGLT2 inhibitor reduced Jprox by ∼30%, reduced PGC by 5-8 mmHg, and reduced glomerular filtration rate (GFR) by ∼25% (all P < 0.0001) but had no effect on PSF. The decrease in PGC was larger with the low-NaCl diet (8 vs. 5 mmHg, P = 0.04) where PGC was higher to begin with (54 vs. 50 mmHg, P = 0.003). Greater decreases in PGC corresponded, unexpectedly, to lesser decreases in GFR (P = 0.04). In conclusion, these results confirm expectations that PGC would decline in response to acute SGLT2 inhibition and that a functioning TGF system is required for this. We infer a contribution of postglomerular vasorelaxation to the TGF responses where decreases in PGC were large and decreases in GFR were small.NEW & NOTEWORTHY It has been theorized that Na-glucose cotransporter (SGLT2) blockade slows progression of diabetic kidney disease by reducing physical strain on the glomerulus. This is the first direct measurement of intraglomerular pressure during SGLT2 blockade. Findings confirmed that SGLT2 blockade does reduce glomerular capillary pressure, that this is mediated through tubuloglomerular feedback, and that the tubuloglomerular feedback response to SGLT2 blockade involves preglomerular vasoconstriction and postglomerular vasorelaxation.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/prevention & control , Hemodynamics/drug effects , Kidney Glomerulus/blood supply , Renal Circulation/drug effects , Sodium Chloride, Dietary/administration & dosage , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/physiopathology , Diabetic Nephropathies/etiology , Diabetic Nephropathies/physiopathology , Diet, Sodium-Restricted , Disease Progression , Glomerular Filtration Rate/drug effects , Male , Punctures , Rats, Wistar , Renal Reabsorption/drug effects , Sodium Chloride, Dietary/metabolism , Sodium Chloride, Dietary/toxicity , Streptozocin
12.
JBI Evid Synth ; 19(1): 34-58, 2021 01.
Article in English | MEDLINE | ID: mdl-32941358

ABSTRACT

OBJECTIVE: The objective of this review was to examine the effect of phenylephrine on cerebral oxygen saturation, cardiac output, and middle cerebral artery blood flow velocity when used to treat intraoperative hypotension. INTRODUCTION: While the etiology of postoperative cognitive dysfunction in adults following surgery is likely multifactorial, intraoperative cerebral hypoperfusion is a commonly proposed mechanism. Research evidence and expert opinion are emerging that suggest phenylephrine adversely affects cerebral oxygen saturation and may also adversely affect cerebral perfusion via a reduction in cardiac output or cerebral vascular vasoconstriction. The administration of phenylephrine to treat intraoperative hypotension is common anesthesia practice, despite a lack of evidence to show it improves cerebral perfusion. Therefore, a systematic review of the effect of phenylephrine on cerebral hemodynamics has significant implications for anesthesia practice and future research. INCLUSION CRITERIA: Studies of adults 18 years and over undergoing elective, non-neurosurgical procedures involving anesthesia were included. In these studies, participants received phenylephrine to treat intraoperative hypotension. The effect of phenylephrine on cerebral oxygen saturation, cardiac output, or middle cerebral artery blood flow velocity was measured. METHODS: Key information sources searched included MEDLINE (Ovid), Embase, CINAHL (EBSCO), and Google Scholar. The scope of the search was limited to English-language studies published from 1999 through 2017. The recommended JBI approach to critical appraisal, study selection, data extraction, and data synthesis were used. RESULTS: This systematic review found that phenylephrine consistently decreased cerebral oxygen saturation values despite simultaneously increasing mean arterial pressure to normal range. Results also found that ephedrine and dopamine were superior to phenylephrine in maintaining or increasing values. Phenylephrine was found to be similar to vasopressin in the extent to which both decreased cerebral oxygen saturation values. Results also showed that phenylephrine resulted in statistically significant declines in cardiac output, or failed to improve abnormally low preintervention values. The effect of phenylephrine on middle cerebral artery blood flow velocity was only measured in one study and showed that phenylephrine increased flow velocity by about 20%. Statistical pooling of the study results was not possible due to the gross variation in how the intervention was administered and how effect was measured. CONCLUSIONS: This review found that phenylephrine administration resulted in declines in cerebral oxygen saturation and cardiac output. However, the research studies were ineffective in informing phenylephrine's mechanism of action or its impact on postoperative cognitive function. SYSTEMATIC REVIEW REGISTRATION NUMBER: PROSPERO (CRD42018100740).


Subject(s)
Hypotension , Vasoconstrictor Agents , Adolescent , Adult , Cardiac Output , Humans , Hypotension/chemically induced , Oxygen/pharmacology , Phenylephrine/therapeutic use , Vasoconstrictor Agents/therapeutic use
13.
J Voice ; 35(5): 685-694, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32312610

ABSTRACT

OBJECTIVE: Synthetic vocal fold (VF) models used for studying the physics of voice production are comprised of silicone and fabricated using traditional casting processes. The purpose of this study was to develop and demonstrate a new method of creating synthetic VF models through 3D printing in order to reduce model fabrication time, increase yield, and lay the foundation for future models with more life-like geometric, material, and vibratory properties. STUDY DESIGN: Basic science. METHODS: A 3D printing technique based on embedding a UV-curable liquid silicone into a gel-like medium was selected and refined. Cubes were printed and subjected to tensile testing to characterize their material properties. Self-oscillating VF models were then printed, coated with a thin layer of silicone representing the epithelium, and used in phonation tests to gather onset pressure, frequency, and amplitude data. RESULTS: The cubes were found to be anisotropic, exhibiting different modulus values depending on the orientation of the printed layers. The VF models self-oscillated and withstood the strains induced by phonation. Print parameters were found to affect model vibration frequency and onset pressure. Primarily due to the design of the VF models, their onset pressures were higher than what is found in human VFs. However, their frequencies were within a comparable range. CONCLUSION: The results demonstrate the ability to 3D print synthetic, self-oscillating VF models. It is anticipated that this method will be further refined and used in future studies exploring flow-induced vibratory characteristics of phonation.


Subject(s)
Vocal Cords , Voice , Humans , Models, Anatomic , Models, Biological , Phonation , Printing, Three-Dimensional , Vibration
14.
Zootaxa ; 4779(3): zootaxa.4779.3.9, 2020 May 20.
Article in English | MEDLINE | ID: mdl-33055783

ABSTRACT

The identity of Chelodina oblonga has been unclear because it has been variously defined to include populations of snake-necked chelid turtle from the southwest of Western Australia, across northern Australia, Cape York and southern New Guinea in its broadest conception, from just the northern part of this range (northern Australia and New Guinea), or restricted to the southwest corner of Western Australia in its narrowest conception. Uncertainty over the identity of the type specimens has added to the confusion. In this paper, we review the historical data on the extent of the type series of Chelodina oblonga, and its potential provenance, and find evidence that resolves some of the inconsistencies in previous literature on the identification of the type. Our analysis casts doubt on the northern Australian provenance of the type material. Hence, we return the name C. oblonga to the south-western species, in accordance with the genetic evidence for the provenance of the type in the Natural History Museum, London, and the external morphology of the type series. We designate a lectotype for the species, and redefine the subgeneric names that apply to the Australasian genus Chelodina, providing a new subgeneric name for one lineage.


Subject(s)
Turtles , Animals , Australia
15.
Am J Physiol Renal Physiol ; 319(4): F712-F728, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32893663

ABSTRACT

Inhibitors of proximal tubular Na+-glucose cotransporter 2 (SGLT2) are natriuretic, and they lower blood pressure. There are reports that the activities of SGLT2 and Na+-H+ exchanger 3 (NHE3) are coordinated. If so, then part of the natriuretic response to an SGLT2 inhibitor is mediated by suppressing NHE3. To examine this further, we compared the effects of an SGLT2 inhibitor, empagliflozin, on urine composition and systolic blood pressure (SBP) in nondiabetic mice with tubule-specific NHE3 knockdown (NHE3-ko) and wild-type (WT) littermates. A single dose of empagliflozin, titrated to cause minimal glucosuria, increased urinary excretion of Na+ and bicarbonate and raised urine pH in WT mice but not in NHE3-ko mice. Chronic empagliflozin treatment tended to lower SBP despite higher renal renin mRNA expression and lowered the ratio of SBP to renin mRNA, indicating volume loss. This effect of empagliflozin depended on tubular NHE3. In diabetic Akita mice, chronic empagliflozin enhanced phosphorylation of NHE3 (S552/S605), changes previously linked to lesser NHE3-mediated reabsorption. Chronic empagliflozin also increased expression of genes involved with renal gluconeogenesis, bicarbonate regeneration, and ammonium formation. While this could reflect compensatory responses to acidification of proximal tubular cells resulting from reduced NHE3 activity, these effects were at least in part independent of tubular NHE3 and potentially indicated metabolic adaptations to urinary glucose loss. Moreover, empagliflozin increased luminal α-ketoglutarate, which may serve to stimulate compensatory distal NaCl reabsorption, while cogenerated and excreted ammonium balances urine losses of this "potential bicarbonate." The data implicate NHE3 as a determinant of the natriuretic effect of empagliflozin.


Subject(s)
Benzhydryl Compounds/pharmacology , Diabetes Mellitus/drug therapy , Glucosides/pharmacology , Kidney Tubules, Proximal/drug effects , Natriuresis/drug effects , Natriuretic Agents/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2/metabolism , Sodium-Hydrogen Exchanger 3/metabolism , Acid-Base Equilibrium/drug effects , Animals , Blood Glucose/metabolism , Blood Pressure/drug effects , Diabetes Mellitus/metabolism , Diabetes Mellitus/physiopathology , Disease Models, Animal , Glycosuria/metabolism , Glycosuria/physiopathology , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Sodium-Hydrogen Exchanger 3/deficiency , Sodium-Hydrogen Exchanger 3/genetics
16.
PLoS Biol ; 18(7): e3000736, 2020 07.
Article in English | MEDLINE | ID: mdl-32634138

ABSTRACT

Lists of species underpin many fields of human endeavour, but there are currently no universally accepted principles for deciding which biological species should be accepted when there are alternative taxonomic treatments (and, by extension, which scientific names should be applied to those species). As improvements in information technology make it easier to communicate, access, and aggregate biodiversity information, there is a need for a framework that helps taxonomists and the users of taxonomy decide which taxa and names should be used by society whilst continuing to encourage taxonomic research that leads to new species discoveries, new knowledge of species relationships, and the refinement of existing species concepts. Here, we present 10 principles that can underpin such a governance framework, namely (i) the species list must be based on science and free from nontaxonomic considerations and interference, (ii) governance of the species list must aim for community support and use, (iii) all decisions about list composition must be transparent, (iv) the governance of validated lists of species is separate from the governance of the names of taxa, (v) governance of lists of accepted species must not constrain academic freedom, (vi) the set of criteria considered sufficient to recognise species boundaries may appropriately vary between different taxonomic groups but should be consistent when possible, (vii) a global list must balance conflicting needs for currency and stability by having archived versions, (viii) contributors need appropriate recognition, (ix) list content should be traceable, and (x) a global listing process needs both to encompass global diversity and to accommodate local knowledge of that diversity. We conclude by outlining issues that must be resolved if such a system of taxonomic list governance and a unified list of accepted scientific names generated are to be universally adopted.


Subject(s)
Classification , Biodiversity , Decision Making , Knowledge , Reproducibility of Results , Species Specificity
17.
Cells ; 9(5)2020 04 29.
Article in English | MEDLINE | ID: mdl-32365470

ABSTRACT

A number of oxylipins have been described as endogenous PPAR ligands. The very short biological half-lives of oxylipins suggest roles as autocrine or paracrine signaling molecules. While coronary arterial atherosclerosis is the root of myocardial infarction, aortic atherosclerotic plaque formation is a common readout of in vivo atherosclerosis studies in mice. Improved understanding of the compartmentalized sources of oxylipin PPAR ligands will increase our knowledge of the roles of PPAR signaling in diverse vascular tissues. Here, we performed a targeted lipidomic analysis of ex vivo-generated oxylipins from porcine aorta, coronary artery, pulmonary artery and perivascular adipose. Cyclooxygenase (COX)-derived prostanoids were the most abundant detectable oxylipin from all tissues. By contrast, the coronary artery produced significantly higher levels of oxylipins from CYP450 pathways than other tissues. The TLR4 ligand LPS induced prostanoid formation in all vascular tissue tested. The 11-HETE, 15-HETE, and 9-HODE were also induced by LPS from the aorta and pulmonary artery but not coronary artery. Epoxy fatty acid (EpFA) formation was largely unaffected by LPS. The pig CYP2J homologue CYP2J34 was expressed in porcine vascular tissue and primary coronary artery smooth muscle cells (pCASMCs) in culture. Treatment of pCASMCs with LPS induced a robust profile of pro-inflammatory target genes: TNFα, ICAM-1, VCAM-1, MCP-1 and CD40L. The soluble epoxide hydrolase inhibitor TPPU, which prevents the breakdown of endogenous CYP-derived EpFAs, significantly suppressed LPS-induced inflammatory target genes. In conclusion, PPAR-activating oxylipins are produced and regulated in a vascular site-specific manner. The CYP450 pathway is highly active in the coronary artery and capable of providing anti-inflammatory oxylipins that prevent processes of inflammatory vascular disease progression.


Subject(s)
Coronary Vessels/drug effects , Fatty Acids/pharmacology , Hydroxyeicosatetraenoic Acids/pharmacology , Peroxisome Proliferator-Activated Receptors/drug effects , Animals , Anti-Inflammatory Agents/pharmacology , Coronary Vessels/metabolism , Female , Inflammation/chemically induced , Inflammation/metabolism , Ligands , Lipidomics/methods , Lipopolysaccharides/pharmacology , Myocytes, Smooth Muscle/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Swine
18.
Nat Rev Nephrol ; 16(6): 317-336, 2020 06.
Article in English | MEDLINE | ID: mdl-32152499

ABSTRACT

Kidney size and glomerular filtration rate (GFR) often increase with the onset of diabetes, and elevated GFR is a risk factor for the development of diabetic kidney disease. Hyperfiltration mainly occurs in response to signals passed from the tubule to the glomerulus: high levels of glucose in the glomerular filtrate drive increased reabsorption of glucose and sodium by the sodium-glucose cotransporters SGLT2 and SGLT1 in the proximal tubule. Passive reabsorption of chloride and water also increases. The overall capacity for proximal reabsorption is augmented by growth of the proximal tubule, which (alongside sodium-glucose cotransport) further limits urinary glucose loss. Hyperreabsorption of sodium and chloride induces tubuloglomerular feedback from the macula densa to increase GFR. In addition, sodium-glucose cotransport by SGLT1 on macula densa cells triggers the production of nitric oxide, which also contributes to glomerular hyperfiltration. Although hyperfiltration restores sodium and chloride excretion it imposes added physical stress on the filtration barrier and increases the oxygen demand to drive reabsorption. Tubular growth is associated with the development of a senescence-like molecular signature that sets the stage for inflammation and fibrosis. SGLT2 inhibitors attenuate the proximal reabsorption of sodium and glucose, normalize tubuloglomerular feedback signals and mitigate hyperfiltration. This tubule-centred model of diabetic kidney physiology predicts the salutary effect of SGLT2 inhibitors on hard renal outcomes, as shown in large-scale clinical trials.


Subject(s)
Diabetes Mellitus/metabolism , Diabetic Nephropathies/metabolism , Glucose/metabolism , Kidney Glomerulus/metabolism , Kidney Tubules/metabolism , Renal Reabsorption , Sodium-Glucose Transporter 2/metabolism , Cellular Senescence , Chlorides/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Fibrosis , Glomerular Filtration Barrier , Glomerular Filtration Rate , Humans , Hypertrophy , Inflammation , Kidney Glomerulus/pathology , Kidney Tubules/pathology , Nephrons/metabolism , Nephrons/pathology , Nitric Oxide/metabolism , Sodium/metabolism , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
19.
Am J Cardiol ; 124 Suppl 1: S28-S35, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31741437

ABSTRACT

Sodium-glucose co-transporter 2 (SGLT2) inhibitors immediately reduce the glomerular filtration rate (GFR) in patients with type 2 diabetes mellitus. When given chronically, they confer benefit by markedly slowing the rate at which chronic kidney disease progresses and are the first agents to do so since the advent of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs). Salutary effects on the kidney were first demonstrated in cardiovascular outcomes trials and have now emerged from trials enriched in subjects with type 2 diabetes mellitus and chronic kidney disease. A simple model that unifies the immediate and long-term effects of SGLT2 inhibitors on kidney function is based on the assumption that diabetic hyperfiltration puts the kidney at long-term risk and evidence that hyperfiltration is an immediate response to a reduced signal for tubuloglomerular feedback, which occurs to the extent that SGLT2 activity mediates a primary increase in sodium and fluid reabsorption by the proximal tubule. This model will likely continue to serve as a useful description accounting for the beneficial effect of SGLT2 inhibitors on the diabetic kidney, similar to the hemodynamic explanation for the benefit of ACEIs and ARBs. A more complex model will be required to incorporate positive interactions between SGLT2 and sodium-hydrogen exchanger 3 in the proximal tubule and between sodium-glucose co-transporter 1 (SGLT1) and nitric oxide synthase in the macula densa. The implication of these latter nuances for day-to-day clinical medicine remains to be determined.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glomerular Filtration Rate/physiology , Kidney Tubules/metabolism , Renal Circulation/physiology , Renal Insufficiency, Chronic/metabolism , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Disease Progression , Glomerular Filtration Rate/drug effects , Humans , Kidney/drug effects , Kidney Tubules/drug effects , Kidney Tubules, Distal/drug effects , Kidney Tubules, Distal/metabolism , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Nitric Oxide Synthase/metabolism , Renal Circulation/drug effects , Renal Insufficiency, Chronic/complications , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Hydrogen Exchanger 3/metabolism
20.
Cell Rep ; 29(7): 1878-1892.e7, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31722204

ABSTRACT

Regulatory B cells (Bregs) play a critical role in the control of autoimmunity and inflammation. IL-10 production is the hallmark for the identification of Bregs. However, the molecular determinants that regulate the transcription of IL-10 and control the Breg developmental program remain unknown. Here, we demonstrate that aryl hydrocarbon receptor (AhR) regulates the differentiation and function of IL-10-producing CD19+CD21hiCD24hiBregs and limits their differentiation into B cells that contribute to inflammation. Chromatin profiling and transcriptome analyses show that loss of AhR in B cells reduces expression of IL-10 by skewing the differentiation of CD19+CD21hiCD24hiB cells into a pro-inflammatory program, under Breg-inducing conditions. B cell AhR-deficient mice develop exacerbated arthritis, show significant reductions in IL-10-producing Bregs and regulatory T cells, and show an increase in T helper (Th) 1 and Th17 cells compared with B cell AhR-sufficient mice. Thus, we identify AhR as a relevant contributor to the transcriptional regulation of Breg differentiation.


Subject(s)
B-Lymphocytes, Regulatory/immunology , Basic Helix-Loop-Helix Transcription Factors/immunology , Cell Differentiation/immunology , Interleukin-10/immunology , Receptors, Aryl Hydrocarbon/immunology , Transcription, Genetic/immunology , Animals , Antigens, CD/genetics , Antigens, CD/immunology , B-Lymphocytes, Regulatory/cytology , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , Interleukin-10/genetics , Mice , Mice, Knockout , Receptors, Aryl Hydrocarbon/genetics , Th1 Cells/cytology , Th1 Cells/immunology , Th17 Cells/cytology , Th17 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...